腾讯医疗AI实验室和美国加州大学联合发布最新研究

2018-12-17 11:46

  腾讯科技讯 每年有超过六十万人被诊断患有头颈部癌症,其中许多人选择接受放射治疗。 但头颈部重要器官比较集中,解剖关系复杂,如果在治疗前未仔细隔离,放疗时周围组织可能会严重受损。

  腾讯医疗AI实验室和美国加州大学合作,正在探索人工智能(AI)如何帮助分割过程,辅助放疗规划。 近日联合在国际权威期刊《Medical Physics》发表最新研究成果——《器官神经网络:深度学习用于快速和全自动整体头颈危及器官靶区勾画》(AnatomyNet: Deep Learning for Fast and Fully Automated Whole-volume Segmentation of Head and Neck Anatomy)。

  在头颈癌放疗过程中,医生根据患者CT图像手动描绘放疗靶区和危及器官(Organ at Risk,OaR),目的是最大限度将放射剂量集中在靶区内,而让周围正常组织或器官少受或免受不必要的伤害。然而,勾勒过程非常耗时,降低诊疗效率的同时,更是耽误了患者的治疗时间。该研究提出一种深度学习模型——“器官神经网络(AnatomyNet)”,可以快速地对整张CT的所有切片进行全自动化器官分割(Segmentation),在小于1秒钟的时间内完成一整幅头颈CT的危及器官勾画,大幅度提升了放疗靶区勾画效率。研究成果一经发表,就引起国际领域内广泛认可,目前已被引用多次。与合作医院的临床测试表明,AI靶区勾画能够大幅度减少医生工作时间,同时提升勾画准确率。

  研究成果获国内外肯定

  《Medical Physics》是美国医学物理学家学会(The American Association of Physicists in Medicine,AAPM)的官方期刊,该研究成果在期刊上发表后,目前已经被多个机构引用。

  美国德克萨斯大学MD安德森癌症中心(MD Anderson Cancer Center)对腾讯医疗AI实验室的“器官神经网络”表示关注,并把该研究成果作为中心一项大规模研究的重要部分。该中心在美国乃至全球皆享誉盛名,多次被评为美国最佳癌症研究机构,也是公认的全球最好的肿瘤医院。

  此外,论文一经发布,很快被加拿大瑞尔森大学、中国中科院等多家机构学者在其研究报告中被提及和引用,作为最新的研究突破获得国内外认可。

  “器官神经网络”为何广受关注?

  在放射治疗过程中,医生需要基于患者CT图像勾画出危及器官,而一个标准的CT图像包含上百张切片,医生需要单独在每个切面中勾画出危及器官的位置,手动描绘非常耗时。一般来说,根据医生熟练程度,大概需要几个小时的时间。

  自动危及器官分割技术可以同时减少治疗计划所占用的时间,以及提高治疗计划的质量。现有的器官自动分割主要使用基于模板的技术。这类技术尽管需要复杂的技术来创建模板,但是不能够充分地对病人之间的差异进行建模。需要时间超过20分钟。

  腾讯医疗AI实验室研究团队提出器官神经网络(AnatomyNet)深度学习方法,可以对头颈CT图像进行危及器官分割。器官神经网络的输入是头颈CT图像的所有切片。该神经网络可以一次性产生所有危及器官的预测结果。

  器官神经网络的构建是基于常用的三维U网络(U-net)架构,但是腾讯AI实验室在三个重要的方面对其进行了扩展:1)一种新的在整幅CT图像上进行自动分割的编码方式,而不是在局部图像块上,或者一部分CT图像切片上分割;2)在编码层中,加入三维Squeeze-and-Excitation残差结构来进行更好的特征表示学习;3)一种新的结合Dice损失和Focal损失的损失函数,用来更好地训练该神经网络。在深度学习的器官分割中,使用这些技巧解决两个主要的挑战:a)小器官的分割(比如,视神经和视交叉)。这些小器官仅仅只有几个切片。b)对于一些器官结构,数据标注不一致以及标注缺失给训练造成一些问题。

腾讯医疗AI实验室和美国加州大学联合发布最新研究

图1:器官神经网络危及器官分割结果

  图1为器官神经网络危及器官分割结果,其中绿色为医生标注,红色为器官神经网络预测结果,黄色表示标注和预测重合,结果显示高度一致。

  从图2的动态效果图上,可以更清晰地在三维CT所有切片上看到器官神经网络预测和医生标注的比较,其中左边显示的是医生标注,右边显示的是器官神经网络预测结果。

腾讯医疗AI实验室和美国加州大学联合发布最新研究

图2:动态效果图

  从结果上说:和之前MICCAI竞赛中最好的方法相比,器官神经网络平均提升了3.3%的Dice指标。器官神经网络仅仅使用0.12秒就可以完全完成一整幅CT图像(178?512?512)的分割。该速度极大地缩短了之前方法所用的时间(20分钟以上)。除此之外,该模型可以处理一整幅包含所有切片的CT图像,以及一次性勾画所有的危及器官,不需要很复杂的预处理以及后处理。


上一篇:探秘南极,腾讯《仙境传说》开启跨界合作新标
下一篇:腾讯“方盒子2.0”炸裂开幕, 最新科技探索集结呈现
扩展阅读
股市最新消息:周末重磅
股市最新消息:周末重磅

传闻:质检总局发布公告称,日前,宝马(中国)汽车贸易有限公司向国家质检总局备案了召回计划,将自2016年12月16日...点击了解…

夜读:今天你可能错过的
夜读:今天你可能错过的

【国内】四川兴文县5.7级地震轻伤16人5人出院12时46分四川兴文县发生5.7级地震。截止到今天(12月16日)20点,兴文县5...点击了解…